
KDI
RDF and OWL

Fausto Giunchiglia and Mattia Fumagallli
University of Trento

1

Title (font gill sans MT)

1. XML
1.1. From HTML to XML
1.2. Similarities and differences
1.3. XML features and limits

2. RDF
2.1. Syntax

2.1.1. Language and data model
2.1.2. Reification
2.1.3. Containers and collections

2.2. Semantics
2.2.1. RDF schema

2.3. Reasoning
2.3.1. Inference system
2.3.2. Inference rules

2.4. Exercises
3.OWL
3.1. The OWL Full Language
3.2. OWL DL and OWL lite
3.3. Exercises

Index

2

XML

3

HTML: focus on presentation
<h2>The adventures of Tom Sawyer</h2>
…
Author: Mark Twain

Cover artist: created by Mark
Twain
…

XML: focus on metadata
<book>

<title> The adventures of Tom Sawyer </title>

<author> Mark Twain </author>

<genre> Bildungsroman </genre>

<genre> picaresque </genre>

…

<publisher> American Publishing Company </publisher>

<year>1876</year>

</book>

Title (font gill sans MT)HTML vs. XML

4

Similarities
•They both use of tags
•Tags may be nested
•Human can read and interpret both HTML and XML quite easily
•Machines can read and interpret only to some extent

Differences
⚫HTML is to tell machines about how to interpret formatting for graphical

presentation
⚫XML is to tell machines about metadata content and relationships

between different pieces of information
⚫XML allows the definition of constraints on values
⚫HTML tags are fixed, while XML tags are user defined

Title (font gill sans MT)HTML vs. XML: similarities and differences

5

⚫ XML meta markup language: language for defining markup
languages

⚫ Query languages for XML:
⚫ Xquery
⚫ XQL
⚫ XML-QLs

⚫ Style sheets can be written in various languages to define how to
present XML to humans:
⚫ CSS2 (cascading style sheets level 2)
⚫ XSL (extensible stylesheet language)

⚫ Transformations: XSLT specifies rules to transform an XML
document to:

⚫ another XML document
⚫ an HTML document
⚫ plain text

Title (font gill sans MT)More about XML

6

XML features:
⚫A metalanguage that allows users to define markup
⚫It separates content and structure from formatting
⚫It is the de facto standard for the representation and exchange

of structured information on the Web
⚫It is supported by query languages

XML limits:
⚫The semantics of XML documents is not accessible to

machines
⚫The nesting of tags does not have standard meaning
⚫Interoperability is possible if there is a shared understanding of

the vocabulary

Title (font gill sans MT)XML in a nutshell

7

RDF

8

RDF (Resource Description
Framework) is at the basis of the
Semantic Web

Definitions
⚫A language for representing Web

resources and information about
them in the form of metadata [RDF
Primer]
⚫A language to represent all kinds of

things that can be identified on the
Web [RDF Primer]
⚫A domain independent data model

for representing information on the
Web [G. Antoniou and F. van
Harmelen, 2004]
⚫A language with an underlying

model designed to publish data on the Semantic Web

al., 2010]

Title (font gill sans MT)RDF and the Semantic Web

9

⚫ Data Distribution (over many machines where each machine
maintains a part)

⚫ row by row
⚫ column by column
⚫ cell by cell (the strategy taken by RDF):
⚫ a global identifier for the column headings
⚫ a global identifier for the row headings
⚫ a global identifier for non-literal values

ID Title Author Medium Year

1 Hamlet Shakespeare Play 1599

2 Othello Shakespeare Play 1604

3 Edward II C. Marlowe Play 1592

4 Hero and
Leander

C. Marlowe Poem 1593

WORKS

SUBJECTS

PROPERTIES

VALUE

Title (font gill sans MT)Distributing Data Across the Web

10

RDF syntax

11

RDF language
⚫A language for representing data in the Semantic Web
⚫A language for expressing simple statements of the form

subject-property-value (binary predicates)
⚫The capability to perform inference on statements

RDF data model
⚫The data model in RDF is a graph data model
⚫An edge with two connecting nodes forms a triple

subject value

property

Title (font gill sans MT)RDF language and data model

12

Formal syntax:
⚫RDF has been given a syntax in XML and inherits all its benefits
⚫Statements in RDF are machine comprehensible

Resources:
⚫An object, an entity or anything we want to talk about (e.g. authors,

books, publishers, places, people, facilities)

Properties:
⚫They codify relations (e.g. written-by, friend-of, located-in, …) and

attributes (e.g. age, date of birth, length …)

Statements:
⚫Statements assert the properties of resources in form of triples

subject-property-value

⚫Every resource and property has a URI (an URL or any other identifier)
⚫Values can be resources (for relations) or literals (for attributes)

Title (font gill sans MT)RDF language

13

resource resource

http://purl.org/dc/terms/coverage

http://www.geonames.org http://www.geonames.org/countries

resource literal

http://purl.org/dc/terms/modified

http://www.geonames.org September 25, 2015

RELATION

ATTRIBUTE

Title (font gill sans MT)RDF data model

14

resource resource

http://purl.org/dc/terms/coverage

http://www.geonames.org http://www.geonames.org/countries

literal

http://purl.org/dc/terms/modified September 25, 2015

Title (font gill sans MT)RDF as graph

15

<?xml version=“1.0”?>

 <rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
xmlns:dc="http://purl.org/dc/terms#">

<rdf:Description rdf:about="http://www.geonames.org">
 <rdfs:label>GeoNames</rdfs:label>
 <dc:coverage

rdf:resource="http://www.geonames.org/countries"/>
 <dc:modified>September 25, 2015</dc:modified>
</rdf:Description>

</rdf:RDF>

Title (font gill sans MT)XML syntax example

16

<?xml version=“1.0”?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:uni="http://www.mydomain.org/uni-ns">

<rdf:Description rdf:about=“CIT1111”>

<uni:courseName>Discrete Matematics</uni:courseName>

<uni:isTaughtBy rdf:resource=“#949318”>

<uni:age rdf:datatype="&xsd:integer">27<uni:age>

</rdf:Description>

<rdf:Description rdf:ID=“#949318">

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

<uni:age rdf:datatype="&xsd:integer">27<uni:age>

</rdf:Description>

</rdf:RDF>

NAMESPACES

RESOURCE
HAS
BEEN
DEFINED
ELSEWHERE

RELATION

DATA
TYPE

VALUE

ATTRIBUTE

RESOURCE
IS
DEFINED
HERE

URI or fragment
of it

Title (font gill sans MT)RDF/XML elements

17

<rdf:Description rdf:ID="CIT1111">
<rdf:type

rdf:resource="http://www.mydomain.org/uni-ns#course"/>

<uni:courseName>Discrete Maths</uni:courseName>

<uni:isTaughtBy rdf:resource="#949318"/>
</rdf:Description>

<rdf:Description rdf:ID="949318">
<rdf:type

rdf:resource="http://www.mydomain.org/uni-ns#lecturer"/>

<uni:name>David Billington</uni:name>
<uni:title>Associate Professor</uni:title>

</rdf:Description>

Title (font gill sans MT)RDF typing

18

Reification can be used to represent:
⚫Generic statements about statements
⚫Structured attributes (e.g. address)
⚫Units of measure
⚫Provenance information
⚫Time validity and other contextual information

Rome
Roman
Empir

e

capital

27 BC 476 AD

statement#12345

startDate endDate

Title (font gill sans MT)RDF Reification

19

RDF semantics

20

RDF
⚫RDF is a universal language that lets users describe resources in their

own vocabularies
⚫RDF by default does not assume, nor defines semantics of any

particular application domain

RDF schema (RDFS)
A language defined to provide mechanisms to add semantics to RDF
resources, in terms of:
⚫Classes (rdfs:Class) and Properties (rdfs:Property)
⚫Class Hierarchies and Inheritance (rdfs:subClassOf)
⚫Property Hierarchies (rdfs:subPropertyOf)
⚫Domain (rdfs:domain) and range (rdfs:range) of properties

It is similar to the object-oriented programming (OOP) paradigm with
the difference that in OOP the central notion is the class (and
properties are defined for them), while in RDF the central notion is the
property and classes are used to specify their domain/range.

Classes and instances
Individual objects that belong to a class are referred to as instances of
that class (rdf:type).

Title (font gill sans MT)RDF schema

21

Title (font gill sans MT)Graphical example

22

<rdfs:Class rdf:about="#lecturer">

<rdfs:subClassOf rdf:resource="#staffMember"/>

</rdfs:Class>

<rdf:Property rdf:ID="phone">

<rdfs:domain rdf:resource="#staffMember"/>

<rdfs:range
rdf:resource="http://www.w3.org/2000/01/rdf-schema#Literal"/>

</rdf:Property>

Title (font gill sans MT)RDF example

23

⚫ rdfs:seeAlso relates a resource to another resource that
explains it

⚫ rdfs:isDefinedBy is a subproperty of rdfs:seeAlso and
relates a resource to the place where its definition,
typically an RDF schema, is found

⚫ rdfs:comment support comments that can be
associated with a resource

⚫ rdfs:label is a human-friendly name associated with a
resource

<rdfs:Class rdf:ID="course">
<rdfs:comment>The class of courses</rdfs:comment>

</rdfs:Class>

<rdf:Property rdf:ID="isTaughtBy">
<rdfs:comment>

Inherits its domain ("course") and range ("lecturer")
from its superproperty "involves"

</rdfs:comment>
<rdfs:subPropertyOf rdf:resource="#involves"/>

</rdf:Property>

Title (font gill sans MT)Utility properties

24

Reasoning

25

Sound and complete set of inference rules:

⚫The RDF inference system consists of inference rules

⚫Sound: inference rules prove only formulas that are valid with
respect to its semantics

⚫Complete: every formula having a certain property can be derived)
inference systems

Examples of rules:

(transitivity)
IF E contains the triples (?u,rdfs:subClassOf,?v) and
(?v,rdfs:subclassOf,?w)
THEN E also contains the triple (?u,rdfs:subClassOf,?w)

(inheritance)
IF E contains the triples (?x,rdf:type,?u) and (?u,rdfs:subClassOf,?v)
THEN E also contains the triple (?x,rdf:type,?v)

Title (font gill sans MT)Inference system

26

Type (rdf:type) propagation through rdfs:subClassOf

:Fausto Giunchiglia rdf:type :Professor

:Professor rdfs:subClassOf :Faculty

:Fausto Giunchiglia rdf:type :Faculty
(inferred)

Relationship propagation through rdfs:subPropertOf

:professorshipAt rdfs:subProperytOf :affiliationWith

:Fausto Giunchiglia :professorshipAt :UniTN

:Fausto Giunchiglia :affiliationWith :UniTN (inferred)

Type identification through rdfs:domain

:professorshipAt rdfs:domain :Person

:Fausto Giunchiglia :professrshipAt :UniTn

:Fausto Giunchiglia rdf:type :Person
(inferred)

Title (font gill sans MT)RDF Inferencing by example

27

Type identification through rdfs:range
:professorshipAt rdfs:range :Educational_Institution
:Fausto_Giunchiglia :professrshipAt :UniTn
:UniTn rdf:type :Educational_Institution (inferred)

 Inferencing through rdfs:domain and rdfs:subClassOf
:Researcher rdfs:subClassOf :Scientist
:hIndex rdfs:domain :Researcher
:Fausto Giunchiglia :hIndex 44
:Fausto Giunchiglia rdf:type :Researcher (inferred)
:Fausto Giunchiglia rdf:type :Scientist (inferred)

 Inferencing through rdfs:range and rdfs:subClassOf
:Educational_Institution rdfs:subClassOf :Organization
:professorshipAt rdfs:range : Educational Institution
:Fausto Giunchiglia :professorshipAt :UniTn
:UniTn rdf:type :Educational Institution (inferred)
:UniTn rdf:type :Organization (inferred)

Title (font gill sans MT)RDF Inferencing by example

28

Set Intersection (if an entity e is in X, it is also in both Y and Z)

X rdfs:subClassOf Y

X rdfs:subClassOf Z

e rdf:type X

e rdf:type Y (inferred)

e rdf:type Z (inferred)

Set Union (any entity e that belongs either to Y or Z also belongs
to X)

Y rdfs:subClassOf X

Z rdfs:subClassOf X

e rdf:type Y or

e rdf:type Z

e rdf:type X (inferred)

Title (font gill sans MT)Intersection and union in RDF

29

Summary

30

• RDF provides a foundation for representing and
processing metadata

• RDF has a graph-based data model
• RDF has a (XML-based) syntax and a semantics

(via RDF Schema)
• RDF has a decentralized philosophy and allows

incremental building of knowledge, and its
sharing and reuse across the Web

• RDF is domain-independent
• RDF Schema provides a mechanism for

describing specific domains
• RDF Schema is a primitive ontology language
• It offers certain modelling primitives with fixed

meaning
• There exist query languages for RDF and RDFS,

including SPARQL

Title (font gill sans MT)Summary

31

Exercises

32

Produce an RDF triple representation of the product,

manufacturer and stock information provided in the

following table.

Table: Product

ID Model
Number

Division Product
Line

Manufacturing
Location

SKU Available

1 RT-11 Safety Safety valve Trento LM5647 70

2 RTX-56 Safety Safety valve Trento DK3852 30

3 MBB-32 Accessories Monitor Hong Kong CM7823 50

4 DR-43 Control
Engineering

Sensor Malaysia SN2643 30

Title (font gill sans MT)Exercise 1

33

Subject Predicate Object

product:Product1 product:id 1

product:Product1 product:modelNumber RT-11

product:Product1 product:division Safety

product:Product1 product:productLine Safety Valve

product:Product1 product:manufacturin
gLocation

Trento

product:Product1 product:sku LM5647

product:Product1 product:available 70

product:Product2 product:id 2

product:Product2 product:modelNumber RTX-56

…

Title (font gill sans MT)Solution

34

Applications that use RDF data from multiple sources need to

overcome the issue of managing terminology.

Suppose that one source uses the term analyst and another

one uses the term researcher. How can you represent the fact

that:

2.1) researcher is a special case of analyst?

2.2) researcher and analyst may overlap?

2.3) researcher and analyst are equivalent?

Title (font gill sans MT)Exercise 2

35

2.1) If a researcher is a special case of analyst, then all

researchers are also analysts. This kind of “if/then”

relationship can be represented with a single rdfs:subClassOf

relation.

:Researcher rdfs:subClassOf :Analyst

2.2) In this case we can define a new class and express the fact

that both classes specialize it (so they may overlap).

:Researcher rdfs:subClassOf :Investigator

:Analyst rdfs:subClassOf :Investigator

2.3) RDFS does not provide a primitive construct for

expressing class equivalence. However, it can be represented

using rdfs:subClassOf. :Analyst rdfs:subClassOf

:Researcher

:Researcher rdfs:subClassOf :Analyst

Title (font gill sans MT)Solution

36

:Researcher
:Researcher rdfs:subClassOf :Analyst

Model the following problem in RDF:

“A military mission planner wants to determine off-limits areas,

i.e. areas that cannot be targeted by weapons. There are two

sources of information contributing to the decision. One

source says that civilian facilities (e.g. churches, schools and

hospitals) must never be targeted. Another source provides

information about off-limits airspaces, called no-fly zones.”

Title (font gill sans MT)Exercise 3

37

source1:CivilianFacility rdfs:subClassOf mmp:OffLimits

source2:NoFlyZone rdfs:subClassOf mmp:OffLimits

Title (font gill sans MT)Solution

38

Suppose an application imports RDF data from an excel file.

• There are two classes of entities, Person and Movie, defined by

the import.

•For Person a property called personName is defined that gives

the name by which that person is known.

•For Movie, the property called movieTitle gives the title under

which the movie was released.

How to use the standard property rdfs:label to develop a generic

display mechanism for showing both the names of the persons

and titles of the movies?

Title (font gill sans MT)Exercise 4

39

We can define each of the properties as subproperty of

rdfs:label

personName rdfs:subPropertyOf rdfs:label

movieTitle rdfs:subPropertyOf rdfs:label

Title (font gill sans MT)Solution

40

Consider that a shipping company has a fleet of vessels
including:
•new ones that are under construction
•old ones that are being repaired
•the ones that are currently in service
•the ones that have been retired from service

Represent information in the table in RDF

Name Maiden Voyage Next Departure Decommission
Date

Destruction
Date

Titanic April 10, 1912 April 14, 1912

MV 16 May 23, 2001 November 29,
2013

MV 22 June 8, 1970 February 10, 1998

Table: Ships

Title (font gill sans MT)Exercise 5a

41

RDF statements to be produced include:

ship:Titanic ship:destructionDate “April 14, 1912”

ship:MV16 ship:nextDeparture “November 29, 2013”

ship:MV22 ship:maidenVoyage “June 8, 1970”

The following statements hold between classes:

ship:DeployedVessel rdfs:subClassOf ship:Vessel

ship:InServiceVessel rdfs:subClassOf ship:Vessel

ship:OutOfServiceVessel rdfs:subClassOf ship:Vessel

Title (font gill sans MT)Solution

42

How can we represent the following inferences?:
•if a vessel has a maiden voyage, then it is a Deployed Vessel
•if next departure date is set, then it is a In Service Vessel
•if it has decommission date or destruction date, then it is a
Out Of Service Vessel

Title (font gill sans MT)Exercise 5b

43

ship:maidenVoyage rdfs:domain ship:DeployedVessel

ship:nextDeparture rdfs:domain ship:InServiceVessel

ship:decommisionDate rdfs:domain ship:OutOfServiceVessel

ship:destructionDate rdfs:domain ship:OutOfServiceVessel

Title (font gill sans MT)Solution

44

In the table below we can see that the ships have

commanders. How can we assert that the commander of a

ship is a captain? And that John and Alexander are therefore

two captains?

Name Maiden Voyage Next Departure Commander

MV 16 May 23, 2001 November 29, 2013 John

MV 22 June 8, 1970 Alexander

Table: Ships

Title (font gill sans MT)Exercise 6

45

ship:hasCommander rdfs:range ship:Captain

ship:John rdf:type ship:Captain

ship:Alexander rdf:type ship:Captain

Title (font gill sans MT)Solution

46

Introduction to OWL

47

Ontology languages allow users to write explicit, formal
conceptualizations of domain models (i.e. formal ontologies)

The main requirements are:
•A well-defined formal syntax
•Sufficient expressive power
•Convenience of expression
•Formal semantics
•Support for efficient reasoning
•A good tread-off between expressivity and efficiency

OWL (Web Ontology Language) has been designed to meet these
requirements for the specification of ontologies and to reason
about them and their instances

Requirements for Ontology Languages

48

Class membership
If x is an instance of a class C, and C is a subclass of D, then
we can infer that x is an instance of D

Equivalence of classes
If class A is equivalent to class B, and class B is equivalent
to class C, then A is equivalent to C

Disjointness and Consistency
Determine that if the classes A and B are disjoint there
cannot be individuals x which are instances of both A and
B. This is an indication of an error in the ontology.

Classification
Certain property-value pairs are a sufficient conditions for
membership in a class A; if an individual x satisfies such
conditions, we can conclude that x must be an instance of
A.

Reasoning capabilities required

49

Range restrictions
We cannot declare range restrictions that apply to some classes only
(e.g. cows eat only plants, while other animals may eat meat too).

Disjointness of classes
We cannot declare that two classes are disjoint (e.g. male and female).

Combinations of classes
We cannot define new classes as union, intersection, and complement
of other classes (e.g. person is the disjoint union of the classes male and
female).

Cardinality restrictions
We cannot express restrictions in the number of relations (e.g. a person
has exactly two parents, a course is taught by at least one lecturer)

Meta-properties
Transitive property (e.g. “greater than”)
Unique property (e.g. “is mother of”)
Inverse property (e.g. “eats” and “is eaten by”)

Limitations in the expressive power of RDF schema

50

• Each OWL Lite
representation belongs to
OWL DL

• Each OWL DL
representation belongs to
OWL Full

• Each valid OWL Lite
conclusion is also valid in
OWL DL

• Each valid OWL DL
conclusion is also valid in
OWL Full

OWL
Lite

OWL
DL

OWL
Full

OWL sub-languages

51

OWL Lite trades expressivity for efficiency
•The less expressive of all languages (it cannot be used to express
enumerated classes, disjointness, and arbitrary cardinality
restrictions)
•It allows assigning simple cardinality constraints of kind 0 or 1
•It allows encoding simple classification hierarchies (e.g.,
taxonomies and thesauri)
•Partially compatible with RDF

OWL DL is a balance between expressivity and computational
completeness
•More expressive than OWL Lite while guarantees decidability
•It allows expressing all DL constructs, some of them with certain
restrictions (e.g. the restriction of not making a class an instance
of another class)
•Partially compatible with RDF

OWL Full trades computational completeness for expressivity
•More expressive than OWL DL, maximum expressiveness (e.g., a
class can be represented also as an individual)
•It is computationally very expensive and does not guarantee
decidability
•Fully upward-compatible with RDF, both syntactically and
semantically

OWL sub-languages

52

The OWL Full language

53

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XLMSchema#">

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology </rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old
"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

</rdf:RDF>

HEADER

ONTOLOGY

OWL XML/RDF syntax

54

Defined using owl:Class that is a subclass of rdfs:Class
owl:Thing is the most general class, which contains everything
owl:Nothing is the empty class

DISJOINT CLASSES owl:disjointWith
<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>
<owl:disjointWith rdf:resource="#assistantProfessor"/>

</owl:Class>

EQUIVALENT CLASSES equivalentClass

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource= "#academicStaffMember"/>

</owl:Class>

Classes

55

Data type properties relate objects to datatype values
(ATTRIBUTES)

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource=
"http://www.w3.org/2001/XLMSchema

#nonNegativeInteger"/>
</owl:DatatypeProperty>

Object properties relate objects to other objects (RELATIONS)

<owl:ObjectProperty rdf:ID="isTaughtBy">

<owl:domain rdf:resource="#course"/>

<owl:range rdf:resource= "#academicStaffMember"/>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>

Properties

56

VALUE CONSTRAINT owl:allValuesFrom
A value constraint puts constraints on the range of the property.
It corresponds to universal quantification.

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>
 <owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>
<owl:allValuesFrom rdf:resource="#Professor"/>

 </owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Property restrictions: a kind of class description (I)

57

CARDINALITY CONSTRAINT someValuesFrom / owl:hasValue
A cardinality constraint puts constraints on the number of
values. It corresponds to the existential quantification or can
indicate a specific value.

<owl:Class rdf:about="#firstYearCourse">
<rdfs:subClassOf>
 <owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom
rdf:resource="#undergraduateCourse"/>

(or)
<owl:onProperty rdf:resource= "#isTaughtBy"/>
<owl:hasValue rdf:resource= "#949352"/>

 </owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Property restrictions: a kind of class description (I)

58

owl:maxCardinality
It describes a class of all individuals that have at most N
semantically distinct values (individuals or data values) for the
property.
<owl:Restriction>
 <owl:onProperty rdf:resource="#hasParent" />
 <owl:maxCardinality
rdf:datatype="&xsd;nonNegativeInteger">2</owl:maxCardinality>
</owl:Restriction>

owl:minCardinality
It describes a class of all individuals that have at least N
semantically distinct values (individuals or data values) for the
property.
<owl:Restriction>
 <owl:onProperty rdf:resource="#hasParent" />
 <owl:minCardinality
rdf:datatype="&xsd;nonNegativeInteger">2</owl:minCardinality>
</owl:Restriction>

Cardinality restrictions (I)

59

owl:cardinality
It describes a class of all individuals that have exactly N
semantically distinct values (individuals or data values) for the
property concerned, where N is the value of the cardinality
constraint.

<owl:Restriction>

 <owl:onProperty rdf:resource="#hasParent" />

 <owl:cardinality
rdf:datatype="&xsd;nonNegativeInteger">2</owl:cardinality>

</owl:Restriction>

This construct is redundant in that it can be replaced by a pair of
matching owl:minCardinality and owl:maxCardinality
constraints with the same value.

Cardinality restrictions (I)

60

EQUIVALENCE owl:equivalentProperty
x P y implies x Q y

<owl:equivalentProperty

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty rdf:resource="#teaches"/>

</owl:ObjectProperty>

NOTE: in RDF we need P rdfs:subPropertyOf Q and Q
rdfs:subPropertyOf P

INVERSE owl:inverseOf
x P y implies y Q x

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource= "#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Meta-properties (I)

61

SYMMETRIC owl:SymmetricProperty
x P y implies y P x

<owl:ObjectProperty rdf:ID=“married">

<rdf:type rdf:resource="&owl;SymmetricProperty"/>

<rdfs:range rdf:resource="#person"/>

<rdfs:domain rdf:resource= "#person"/>

</owl:ObjectProperty>

TRANSITIVE owl:TransitiveProperty
x P y and y P z implies x P z

<owl:ObjectProperty rdf:ID=“ancestor">

<rdf:type rdf:resource="&owl;TransitiveProperty"/>

<rdfs:range rdf:resource="#person"/>

<rdfs:domain rdf:resource= "#person"/>

</owl:ObjectProperty>

Meta-properties (II)

62

FUNCTIONAL PROPERTY owl:FunctionalProperty
A functional property is a property that can have only one value
as range for any given individual (e.g., hasMother , hasPresident).

INVERSE FUNCTIONAL PROPERTY
owl:InverseFunctionalProperty
It defines a property that cannot have the same value as range for
any given individual (e.g., MotherOf , PresidentOf).

Functional and inverse functional properties

63

It allows a class to be defined by exhaustively enumerating its
instances. The class extension of a class described with
owl:oneOf contains exactly the enumerated individuals, no
more, no less.

<owl:Class rdf:ID="weekdays">
<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>
<owl:Thing rdf:about="#Tuesday"/>
<owl:Thing rdf:about="#Wednesday"/>
<owl:Thing rdf:about="#Thursday"/>
<owl:Thing rdf:about="#Friday"/>
<owl:Thing rdf:about="#Saturday"/>
<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>
</owl:Class>

Enumerations

64

<owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Tosca" />
 <owl:Thing rdf:about="#Salome" />
 </owl:oneOf>
 </owl:Class>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Turandot" />
 <owl:Thing rdf:about="#Tosca" />
 </owl:oneOf>
 </owl:Class>
 </owl:intersectionOf>
</owl:Class>

Intersection

65

<owl:Class>
 <owl:unionOf rdf:parseType="Collection">
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Tosca" />
 <owl:Thing rdf:about="#Salome" />
 </owl:oneOf>
 </owl:Class>
 <owl:Class>
 <owl:oneOf rdf:parseType="Collection">
 <owl:Thing rdf:about="#Turandot" />
 <owl:Thing rdf:about="#Tosca" />
 </owl:oneOf>
 </owl:Class>
 </owl:unionOf>
</owl:Class>

Union

66

<owl:Class>

 <owl:complementOf>

 <owl:Class rdf:about="#Meat"/>

 </owl:complementOf>

</owl:Class>

Complement

67

Instances of classes are declared as in RDF:
<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource= "#academicStaffMember"/>
</rdf:Description>
<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">39<uni:age>
</academicStaffMember>
Same instances:
<rdf:Description rdf:about="#William_Jefferson_Clinton">
 <owl:sameAs rdf:resource="#BillClinton"/>
</rdf:Description>
Different instances:

<Opera rdf:ID="Nozze_di_Figaro">

 <owl:differentFrom rdf:resource="#Don_Giovanni"/>

</Opera>

Instances

68

OWL DL and OWL lite

69

OWL DL is a sublanguage of OWL which places a number of
constraints on the use of the OWL language constructs which
ensure that computational complexity is the same as
corresponding Description Logic.
•Each individual must be an instance of a class, and in particular of
owl:Thing
•Pairwise separation between classes, datatypes, datatype
properties, object properties, annotation properties, ontology
properties (i.e., the import and versioning stuff), individuals, data
values and the built-in vocabulary. This means that, for example, a
class cannot be at the same time an individual.
•No cardinality constraints can be placed on transitive properties or
their inverses or any of their super-properties.
•It is allowed to use the intersectionOf construct with any number
of classes and of any non negative integer in the cardinality
restrictions value fields

OWL DL

70

OWL lite is a sublanguage of OWL DL which places further
constraints on the use of the OWL language constructs which
ensure a lower computational complexity
•Users are allowed to use a subset of the OWL, RDF and RDFS
vocabulary
•To define a class, one must use the OWL construct owl:Class
•OWL constructs complementOf, disjointWith, hasValue, oneOf
and unionOf are not allowed
•All three cardinality constructs – cardinality, maxCardinality and
minCardinality, can only have 0 or 1 in their value fields
•equivalentClass and intersectionOf cannot be used in a triple if the
subject or object represents an anonymous class

OWL lite

71

Exercises

72

Suppose that a family consists of a father (John), a

mother (Maria), two sisters (Sara and Jenifer) and two

brothers (David and Robert). In an OWL representation

the two brothers and the two sisters are codified as

follows:

 :David :hasFather :John
 :Sara :hasFather :John
 :John :spouseOf :Maria

Later on another property :hasChild is codified.

(i) What will be the output of the following SPARQL

Query when a reasoner is activated?

:John :hasChild ?y

Exercise 1

73

(ii) Expand the OWL representation in a way that

supports returning non-empty result of the following

query and this expansion is independent of the

entity-entity triples.

:John :hasChild ?y
(iii) Add also the following axioms to the dataset.

 :Jenifer :hasFather :John
 :Robert :hasFather :John

 What results the following query will return?
 :John :hasChild ?y

(iv) How can we infer the spouse relation in the reverse
direction?

Exercise 1 (cont)

74

 The result of the query is empty.(i)

 We can make the property :hasFather as an inverse
property of :hasChild

:hasFather owl:inverseOf :hasChild
 Query Result:
 :David

 :Sara

(ii
)

 :David
 :Sara
 :Jenifer
 :Robert

(iii)

 We can make the relation :spouseOf its own
inverse as follows:

 :spouseOf owl:inverseOf :spouseOf

(iv)

Solution 1

75

Within a family, the following relations are applicable in
both directions (from subject to object, and vice versa):

:spouseOf
:marriedTo
:siblingOf

whereas the same those not always apply to the
following:

:brotherOf
 :sisterOf
(i) Which property holds in the relations that are
applicable in both directions?
(ii) How can we represent these relations in OWL?
(iii) In which basic category this property belongs?

Exercise 2

76

 Symmetric property(i)

 :spouseOf rdf:type
owl:SymmetricProperty

 :marriedTo rdf:type
owl:SymmetricProperty

 :siblingOf rdf:type
owl:SymmetricProperty

(ii
)

 The symmetric property is an object property.
Moreover, the domain and range of the symmetric
property are the same (owl:Class)

(iii
)

Solution 2

77

Consider that in the family of John and Maria, also
John’s father (James) and mother (Jerry) live. Relations
such as :hasAncestor and :hasDescendent can be applied
between different levels. For example:
 :John :hasAncestor :James
 :Sara :hasAncestor :John
 :James :hasDescendent :John
 :John :hasDescendent :Sara
(i) Which property holds in the relations that are
applicable in different levels of the hierarchy?
(ii) How can we represent these relations in OWL?
(iii) In which basic category this property belongs?
(iv) Show the results of the following queries:
 a) :James :hasDescendent ?y
 b) :John :hasAncestor ?y

Exercise 3

78

 Transitive property (i)

:hasAncestor rdf:type
owl:TransitiveProperty

:hasDescendent rdf:type
owl:TransitiveProperty

(ii
)

 The transitive property is an object property.(iii
)

 a) :John
 :Sara

 b) :James

(iv)

Solution 3

79

(i) In RDFS we can represent that two classes :Test and
:Experiment are equivalent.
 :Test rdfs:subClassOf :Experiment
 :Experiment rdfs:subClassOf :Test
Convert this representation in OWL.

(ii) In RDFS we can represent that two properties
:hasChild and :hasKid are equivalent.
 :hasChild rdfs:subPropertyOf :hasKid
 :hasKid rdfs:subPropertyOf :hasChild
Convert this representation in OWL.
(iii) Is there any way to represent the fact that two
entities (or individuals) :Italia and :Il_Bel_Paese are the
same?

Exercise 4

80

 :Test owl:equivalentClass :Experiment(i)

:hasChild owl:equivalentProperty :hasKid(ii
)

 :Italia owl:sameAs :Il_Bel_Paese(iii
)

Solution 4

81

(i) Which OWL property allows to have exactly one
value for a particular individual?

(ii) The following relations can be defined using the
OWL property above.

:hasFather
 :hasMother
Represent them in OWL and demonstrate their use
with necessary entity-entity axioms.

Exercise 5

82

 OWL Functional property (i)

:hasFather rdf:type
owl:FunctionalProperty

:hasMother rdf:type
owl:FunctionalProperty

Two entity-entity axioms are provided below:
:John :hasFather :James
:John :hasFather :Handler

The objects :James and :Handler are the values of the
same subject and property. We already have defined
that :hasFather property is functional. Therefore, it
can be concluded that :James and :Handler refer to
the same person.

(ii
)

Solution 5

83

(i) Which OWL property allows to have exactly one
value for a particular object?
(ii) Demonstrate the use of such a property in
developing applications such as the detection of
possible duplicates.

Exercise 6

84

 OWL Inverse Functional property (i)

We can encode the property :SSN (social security
number) as follows:

:SSN rdf:type owl:InverseFunctionalProperty

Two entity-entity axioms are provided below:
mo:James :SSN N123812834
ps:Handler :SSN N123812834

The subjects :James and :Handler are attached to the
same social security number, which cannot be shared
by two different persons. Therefore, we can conclude
that mo:James and ps:Handler are the same entity.

(ii
)

Solution 6

85

o RDF Primer (W3C): http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/

o Resource Description Framework (RDF): Concepts and Abstract Syntax
(W3C): http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/

o RDF Schema (W3C): http://www.w3.org/TR/rdf-schema/

o G. Antoniou & F. van Harmelen (2004). A Semantic Web Primer
(Cooperative Information Systems). MIT Press, Cambridge MA, USA.

o F. Giunchiglia, F. Farazi, L. Tanca, and R. D. Virgilio. The semantic web
languages. In Semantic Web Information management, a model based
perspective. Roberto de Virgilio, Fausto Giunchiglia, Letizia Tanca (Eds.),
Springer, 2009.

o D. Allemang and J. Hendler. Semantic web for the working ontologist:
modeling in RDF, RDFS and OWL. Morgan Kaufmann Elsevier,
Amsterdam, NL, 2008.

o OWL Web Ontology Language(W3C):
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

o G. Antoniou & F. van Harmelen (2004). A Semantic Web Primer
(Cooperative Information Systems). MIT Press, Cambridge MA, USA.

o D. Allemang and J. Hendler. Semantic web for the working ontologist:
modeling in RDF, RDFS and OWL. Morgan Kaufmann Elsevier,
Amsterdam, NL, 2008.

References

86

http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140225/
http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/

