

Knowledge Graph Engineering Depart

Department of information engineering and computer science

イロト イポト イヨト イヨト

Part 4.5 Phase 4 - Knowledge Definition

- 1 A Methodology for Data Reuse
- 2 Phase 1 Purpose Definition
- 3 Phase 2 Information Gathering
- 4 Phase 3 Language Definition
- 5 Phase 4 Knowledge Definition
- 6 Phase 5 Data Definition

Department of information engineering and computer science

Phase 4 - Knowledge Definition

- Input: the collected project resources, the formalized user's purpose and the data intermediary knowledge catalog.
- **Output**: the KG's teleontology (or a set for each KGs to be produced).
- **Objective**: the knowledge resources produced in this phase aims at:
 - unifying the representation of the information;

improving the interoperability and reusability of the final KG(s), by building knowledge resources reusing as mush as possible well-known standard domain ontologies and data schema.

Department of information engineering and computer science

Knowledge Definition - Activities

- In this phase, like in the others, the activities are divided over the knowledge and data layers.
- (knowledge layer) **KTelos**: In this activity the KTelos process is exploited to produce the final KG(s) **interoperable** ontology(ies). **Such ontology is produced by reuse**!
 - Reusing as much as possible the standard reference domain ontologies provided in input by the Intermediary Knowledge Catalog⁴³
 - Merging the (portion of) reference domain ontologies with the Purpose knowledge formalized into the ER model.
 - The output of this activity will be interoperable due to the reuse of standard already existing knowledge, and purpose specific being based on the formalized purpose.

• How to choose whether to reuse ETypes or keep the Purpose's ones ?

 43 The LiveKnowledge catalog is the main knowledge source but not the only one. Ξ \circ 9.0

Department of information engineering and computer science

イロト イ理ト イヨト イヨト

Knowledge Definition - Activities

- (data layer) Dataset Alignment: On the data layer this activity aims at aligning the dataset previously collected, cleaned and formatted, with the modelling choices operated in the above parallel knowledge layer activity.
 - **Dataset updates** based on the ETypes modelled in KTelos.
 - The unique ontology produced for the final KG could represent the ETypes in a different way respect to their representation into each single datasets.
 - Data types alignment.

Department of information engineering and computer science

イロト 不得下 イヨト イヨト

Knowledge Definition - Producer & Consumer

- Producer: at producer side the objective is to model interoperable (thus by reuse) ontologies, for each KG (thus for each datasets) to be created.
 - This means that **more ontologies files are produced**, one for each KG to be generated by the Producer.
- **Consumer**: at consumer side the objective is to model a single unique interoperable (thus by reuse) ontology, for the single composed final KG.
 - In this case a single ontology file is produced.

Department of information engineering and computer science

・ 何 ト ・ ヨ ト ・ ヨ ト

Phase 4 - Knowledge Definition

1 Preliminaries definitions

- ER Models (recap)
- EER Model
- Ontologies
- WC3 Technologies & Tools (recap)
- 2 iTelos Knowledge Modelling
 - EER Models Limitations
 - Teleologies & Teleontologies
 - KTelos process
- 3 Dataset Alignment

Э

Department of information engineering and computer science

What are ER Models?

- An Entity-Relationship (ER) Model describes interrelated things of interest in a specific domain of knowledge.
- It is composed of classes / entity types (etypes) (which classify the things of interest, i.e. entities) and specifies relationships that can exist between entities (instances of those entity types).
- The ER model is, thus, an abstract data model that defines a data or information structure which can be implemented in a data/knowledge base.
- It is usually drawn in a graphical form as boxes (classes) that are connected by lines (relationships) which express the associations and dependencies between entities.

Department of information engineering and computer science

ER Model: A Complete Example

Part 4 - The iTelos Methodology

Part 4.5 - Phase 4 - Knowledge Definition

Department of information engineering and computer science

・ 何 ト ・ ヨ ト ・ ヨ ト

Phase 4 - Knowledge Definition

1 Preliminaries definitions

- ER Models (recap)
- EER Model
- Ontologies
- WC3 Technologies & Tools (recap)
- 2 iTelos Knowledge Modelling
 - EER Models Limitations
 - Teleologies & Teleontologies
 - KTelos process
- 3 Dataset Alignment

Department of information engineering and computer science

Extended ER (EER) Model

- The Extended ER (EER) Model includes all of the concepts introduced by the ER model.
- Additionally it includes the concepts of a subclass and superclass ('is-a' relation). Super class is an entity that can be divided into further sub-classes. Sub class inherits the properties and attributes from super class.
- It also includes Generalization / Specialization. Generalization is a process of generalizing an entity which contains generalized attributes or properties of generalized entities. Specialization is a process of identifying subsets of an entity that share some different characteristic.
- It was developed to reflect more precisely the properties and constraints that are found in more complex data/knowledge bases.

Department of information engineering and computer science

EER: Superclass/Subclass

A superclass is a high-level entity that can be further segmented into subclasses or subsets. It is also referred to as a Parent class. For example, if Shape is considered an entity, then a Square, Circle, and Triangle are possible subclasses. A subclass can be referred to as a child or derived class. In this case, Shape is the superclass.

Note: 'd' stands for disjoint (subclasses).

Department of information engineering and computer science

EER: Characteristics

- A subclass is said to inherit from a superclass. A subclass can inherit from many superclasses in the hierarchy.
- When a subclass inherits from one or more superclasses, it inherits all their attributes.
- In addition to the inherited attributes, a subclass can also define its own specific attributes.
- The process of making a superclass from a group of subclasses is called generalization.
- The process of making subclasses from a general concept is called specialization.

Department of information engineering and computer science

E(E)R: Relationship Cardinality

CHEN notation

NOTE: CHEN notation is Peter PS. Chen's original ER diagram notation.

Department of information engineering and computer science

E(E)R: Cardinality Explained

- One-to-One: One entity from entity type X (e.g., 'Student Residence') can be associated (e.g., 'near') with one entity of entity type Y (e.g., 'Bus Stop').
- One-to-Many: One entity from entity type X (e.g., 'Bus Agency') can be associated (e.g., 'operates') with multiple entities of entity type Y (e.g., 'Bus Route').
- Many-to-One: Multiple entities from entity type X (e.g., 'Bus Stop') can be associated (e.g., 'spatialPartOf') with one entity of entity type Y (e.g., 'Bus Route').
- Many-to-Many: Multiple entities from entity type X can be associated with multiple entities of entity type Y, e.g., multiple students supervised by multiple faculty members, AND, multiple faculty members supervising multiple students.

Department of information engineering and computer science

EER: Example

Reference: jcsites.juniata.edu

Part 4 - The iTelos Methodology

Department of information engineering and computer science

・ 何 ト ・ ヨ ト ・ ヨ ト

Phase 4 - Knowledge Definition

1 Preliminaries definitions

- ER Models (recap)
- EER Model
- Ontologies
- WC3 Technologies & Tools (recap)
- 2 iTelos Knowledge Modelling
 - EER Models Limitations
 - Teleologies & Teleontologies
 - KTelos process
- 3 Dataset Alignment

Department of information engineering and computer science

What is an Ontology (The key aspects)?

- "explicit specification of a conceptualization" [Gruber, 1993]
- "formal specification of a shared conceptualization" [Borst, 1997]
- "An ontology is a formal, explicit specification of a shared conceptualization" [Studer et al., 1998]
- But....
 - What is a conceptualization?
 - What is a proper formal, explicit specification?
 - Why is 'shared' of importance?

What is a Conceptualization?

- Formal structure of (a piece of) reality as perceived and organized by an agent, independently of:
 - the vocabulary used
 - the actual occurence of a specific situation
- Different situations involving same objects, described by different vocabularies, may share the same conceptualization
- "mela", "apple": different terms for the same conceptualization...

Department of information engineering and computer science

Formal, Explicit Specification

- We need to use a language to refer to the elements of a conceptualization
 - the language commits to a conceptualization
- Problem: a logical signature can be interpreted in arbitrarily many different ways
- Once we commit to a certain conceptualization, we have to make sure to only admit those models which are intended according to the conceptualization.
 - the intended models of a relation predicate will be those such that the interpretation of the predicate returns one of the various possible extensions (one for each possible world) of the conceptual relation denoted by the predicate.

Department of information engineering and computer science

Why is SHARED of importance?

- Sharing whole conceptualizations may not be possible (private to the mind of the individuals)
- Sharing approximations of conceptualizations based on a limited set of examples, and showing the actual circumstances where a certain conceptual relation holds
- Without such minimal sharing, the benefits of having an ontology are limited
 - ontology may turn out useless if it is used in a way that runs counter the understanding of the primitive terms in the appropriate way.
- Any ontology will always be less complete and less formal than it would be desirable in theory.

Department of information engineering and computer science

The Ontology Building Block: IS-A Relation

Is-a Relation

- **is-a relation**: binary relation between concepts (not individuals)
- Examples: Student is-a Person, Air Pollutant is-a Pollutant
 - Informal meaning: all the students are persons (or all the individuals that are students are also persons); if something is an air pollutant, it is also a pollutant
- In set-theoretical terms:

Department of information engineering and computer science

IS-A Hierarchy: Example Taxonomy

Is-a hierarchy

- taxonomy: a hierarchical organized subject-based classification system
 - typically depicted in a tree-like structure
- is-a hierarchy: taxonomy of concepts organized according to the is-arelation.

C~

Department of information engineering and computer science

Types of Ontologies

- Top-level ontologies describe very general concepts like space, Time, etc which are independent of a
 particular problem or domain.
- Domain ontologies and task ontologies describe, respectively, the vocabulary related to a generic domain (like medicine, or automobiles) or generic task or activity (like selling) by specializing the terms introduced in the top-level ontology.
- Application ontologies describe concepts depending both on a particular domain and task, which are
 often specializations of both the related ontologies.

Department of information engineering and computer science

Domain Ontologies

- Domain ontologies are reusable in a given specific domain (medical, law, automobile, etc.).
- These ontologies provides vocabularies about concepts within a domain and their relationships, about the activities taking place in that domain.
- The concepts in domain ontologies are usually specializations of concepts already defined in top-level ontologies

Department of information engineering and computer science

Example: schema.org (fragment)

- Organization
 - Airline
 - Consortium
 - Corporation
 - .
 - EducationalOrganization
 - CollegeOrUniversity
 - ElementarySchool
 - HighSchool
 - MiddleSchool
 - Preschool
 - School
 - FundingScheme
 - GovernmentOrganization
 - LibrarySystem
 - LocalBusiness
 - AnimalShelter
 - ArchiveOrganization di cini e con ganne
 - AutomotiveBusiness
 - AutoBodyShop
 - AutoDealer

Department of information engineering and computer science

Example: The GENE Ontology

Part 4 - The iTelos Methodology

Part 4.5 - Phase 4 - Knowledge Definition

Department of information engineering and computer science

Domain ontology - Characteristics

- Sharing common understanding of the structure of information in the selected domain (among people or software agents)
- Enabling reuse of domain knowledge
- Making explicit the domain assumptions underlying an implementation. (key feature: It is thus easier to change these assumptions easily if our knowledge about the domain changes).

Department of information engineering and computer science

Ontologies - our own perspective

- The language of an ontology is written in a conceptual language which eliminates the ambiguites of NLP
- Given a language, an ontology is an entity type (etype) graph (ETG). An ETG is a set of etypes which associated with a set of objects and data properties (similarly to ER models)
- The ISA hierarchy is modeled as specialization hierarchy where more specific etypes inherit properties (similarly to EER models)
- Being designed with a more general purpose than a teleology (never made explicit in the SoA ontologies), an ontology provides a general view, and extra etypes and properties
- An ontology provides a more general view of the domain and extra etypes and properties (more general, but not only) which can be used to enrich a teleology, towards sharing and reusability.

Department of information engineering and computer science

・ 何 ト ・ ヨ ト ・ ヨ ト

Phase 4 - Knowledge Definition

1 Preliminaries definitions

- ER Models (recap)
- EER Model
- Ontologies
- WC3 Technologies & Tools (recap)
- 2 iTelos Knowledge Modelling
 - EER Models Limitations
 - Teleologies & Teleontologies
 - KTelos process
- 3 Dataset Alignment

Department of information engineering and computer science

What is RDF?

- A language for representing Web resources and information about them in the form of metadata [RDF Primer]
- A language to represent all kinds of things that can be identified on the Web [RDF Primer]
- A domain independent data model for representing information on the Web [G. Antoniou and F. van Harmelen, 2004]
- A language with an underlying model designed to publish data on the Semantic Web [F. Giunchiglia et al., 2010]

Department of information engineering and computer science

RDF language and data model

RDF language:

- A language for expressing simple statements of the form subject-property-value (binary predicates), with reasoning and inferencing capabilities
- The data model in RDF is a graph data model
- An edge with two connecting nodes forms a triple

Department of information engineering and computer science

RDF Graph

VIVERSITY

.C

Department of information engineering and computer science

RDF Schema (RDFS)

RDF:

- RDF is a universal language that lets users describe resources in their own vocabularies
- RDF by default does not assume, nor defines semantics of any particular application domain

Department of information engineering and computer science

RDF Schema (RDFS) [Contd.]

RDF Schema (RDFS): A language defined to provide mechanisms to add semantics to RDF resources, in terms of:

- Classes (rdfs:Class) and Properties (rdfs:Property)
- Class Hierarchies and Inheritance (rdfs:subClassOf)
- Property Hierarchies (rdfs:subPropertyOf)
- Domain (rdfs:domain) and range (rdfs:range) of properties

Department of information engineering and computer science

Requirements for Ontology Languages

Ontology languages allow users to write explicit, formal conceptualizations of domain models (i.e. formal ontologies). The main requirements are:-

- A well-defined formal syntax
- Sufficient expressive power, and convenience of expression
- Formal semantics, and support for efficient reasoning
- A good tread-off between expressivity and efficiency

OWL (Web Ontology Language) has been designed to meet these requirements for the specification of ontologies and to reason about them and their instances

Department of information engineering and computer science

OWL RDF/XML Syntax

Department of information engineering and computer science

Protégé Ontology Editor (Click Here) WHY PROTÉGÉ

Protégé's plug-in architecture can be adapted to build both simple and complex ontology-based applications. Developers can integrate the output of Protégé with rule systems or other problem solvers to construct a wide range of intelligent systems. Most important, the Stanford team and the vast Protégé community are here to help.

UNIVERSITY OF TRENTO Department of Information Engineering and Computer Science

Knowledge Graph Engineering

Department of information engineering and computer science

Protégé: Interface Illustration

File Edit View Reasoner Tool	s Refactor Window	Ontop Help	
< >	b.org/ontology/core)		
Active ontology × Entities × In	dividuals by class \times		
Annotation properties	Datatypes	Individuals	owl: Thing — http://www.w3.org/2002/07/owl#Thing
Classes Object propertie	s Data	properties	Annotations Usage
lass hierarchy: owl:Thing		2080	Annotations: owl:Thing
😫 🖦 🕱		Asserted	Annotations 🕂
• owl Thing			
► O Addressing			
⊷ ⊷● Area			
ARG_000008			
⊷ ⊷⊖ Calendar			
← ←● Code (vcard:Code)			
 Communication 			
			Desertablem: aud/Thime
			Description: own ming
← ← ○ Explanatory			Equivalent To 🐨
~ ⊢9 Geographical			Sub Class Of
← e Identification			Subclass of
⊷ ←● Interventional_study			General class axioms
∽ ⊢⊜ Organizational			
⊷ ⊷o Security			SubClass Of (Anonymous Ancestor)
←● vcard:Role			
			Instances 🕀

Part 4.5 - Phase 4 - Knowledge Definition

Department of information engineering and computer science

Phase 4 - Knowledge Definition

- 1 Preliminaries definitions
 - ER Models (recap)
 - EER Model
 - Ontologies
 - WC3 Technologies & Tools (recap)

2 iTelos Knowledge Modelling

- EER Models Limitations
- Teleologies & Teleontologies
- KTelos process

3 Dataset Alignment

Э

A E E A E F

4 All 1-

Department of information engineering and computer science

ER/EER models - limitations

ER/EER models have three main weaknesses which hugely affect the reuse of data:

- What situational context is the ER model modeling? Its spatio-temporal coordinates are left implicit, as if the ER model could be used unchanged at all times and in all locations.
- Where do data and object properties come from? A theory providing the guidelines for thinking of the possible ways in which entities interact is missing.
- Where do the extra etypes of the EER model come from? The step from an ER model and an EER model is completely undefined.

NOTE: The design of ER models is driven by the application. The design of EER models, as extensions of ER models, is driven by the need of quality and of facilitating reuse.

Department of information engineering and computer science

The design of EER models, as extensions of ER models, should be driven by the need of facilitating reuse.

Where do the extra etypes of the EER model come from?

The step from an ER model to an EER model is completely undefined.

The etypes in ER models do not conform to a general theory about *what exists* in the world around us.

As a result, the etype hierarchies in EER models are developed in a focus-less fashion, without a clear methodology.

This results in hindrance of:

(i) data and knowledge reuse, and consequently

(ii) lack of semantic interoperability.

Department of information engineering and computer science

・ 何 ト ・ ヨ ト ・ ヨ ト

Phase 4 - Knowledge Definition

- 1 Preliminaries definitions
 - ER Models (recap)
 - EER Model
 - Ontologies
 - WC3 Technologies & Tools (recap)

2 iTelos Knowledge Modelling

- EER Models Limitations
- Teleologies & Teleontologies
- KTelos process

3 Dataset Alignment

Э

Department of information engineering and computer science

Teleology - **Definition**

- A teleology (see: ER 2017) is an ontology with the *proviso* that teleologies focus on function and on how a chosen representation fits a certain *purpose*, this being the basis for a general model for the *diversity of knowledge*.
- A teleology, therefore, makes explicit the spatio-temporal context which it models.
- This results in explication of the underlying design assumptions of a teleology and thereby makes it flexible for data and knowledge reuse and integration.
- The explicit split between constructing teleologies vs. how it is semantically aligned to more general etypes (in summary, modelling teleontologies) allows for large scale data and knowledge reuse.

-

Department of information engineering and computer science

Teleontology - Definition

- Teleontology: A teleontology is a teleology extended with more etypes which grounds it to what exists in the world around us. Given a teleology generated according to a purpose, a reference ontology is selected/designed to which the teleological concepts are aligned. Concretely axiomatized as an OWL RDF/XML file.
- It is, thus, a graph encoding IS-A, SPATIAL PART OF, LOCATED IN relations + functions and actions (in the form of object and data properties) amongst the potential concepts to be modelled.
- A teleontology models the specific concepts of a domain characterized by their (object and data)properties via the teleology.
- While at the same time, it semantically constrains the ontological meaning of the concepts in the teleology via their link to the chosen reference ontology.

Department of information engineering and computer science

Example Illustration

Part 4 - The iTelos Methodology

Part 4.5 - Phase 4 - Knowledge Definition

Department of information engineering and computer science

・ 何 ト ・ ヨ ト ・ ヨ ト

Phase 4 - Knowledge Definition

- 1 Preliminaries definitions
 - ER Models (recap)
 - EER Model
 - Ontologies
 - WC3 Technologies & Tools (recap)

2 iTelos Knowledge Modelling

- EER Models Limitations
- Teleologies & Teleontologies
- KTelos process
- 3 Dataset Alignment

イロト 不得下 イヨト イヨト

kTelos Process

Knowledge Graph Engineering

- The concrete steps for modelling knowledge as teleologies and teleontologies is via the kTelos process. It is as follows:
 - **1 Top-Down:** reuse of a Lightweight Ontology (aligned to the UKC)
 - **2 Bottom-Up:** modelling of a Teleology (aligned to the requirements modelled as CQs)
 - **3 Middle-Out:** aligning of a Teleology grounded into the Lightweight Ontology to generate a Teleontology.
 - 4 Finally, the **knowledge annotation** of a Teleontology.
- Note: All the above knowledge artefacts can reuse concepts from existing knowledge resources.

Department of information engineering and computer science

Reuse General Example: FOAF

Active ontolog	gy × Entities × Indiv	iduals by cla	ss ×	
Annotation pr	operties	Datatype	s li	ndividuals
Classes	Object properties		Data properties	
Class hierarchy: Sp	patial Thing			
😘 🕵				Asserted
 Thing Agent Group Per Conce Per Conce Scher Conce Conce Persoid Persoid Conce Scher Scher 	t oup ganization son son (foaf:Person) ema:Person ept ms:Agent ment ge sonalProfileDocumer ema:ImageObject Property e Account on ct :lass ma:CreativeWork ma:ImageObject	nt		
← e scher	na:Person			. C

イロト イ理ト イヨト イヨト

Top Down: Lightweight Ontology

- A lightweight ontology is an ontology which is modelled, top-down, as "consisting of backbone taxonomies only" (see: Paper).
- It is modelled in alignment with the hierarchy of the UKC.
- The hierarchy of concepts in lightweight ontologies is modelled via the subset of relation. The child node is a subset of the parent superset.
- The chief objective of a lightweight ontology is to heirarchically classify the datasets which would be finally integrated in the Entity Graph (EG).
- A lightweight ontology file (in OWL RDF/XML format) on OpenStreetMaps (OSM) is provided to you for reuse.

Department of information engineering and computer science

Lightweight Ontology Example

/ osm_place / road						
Active ontology	/ × Entities × Individ	duals by class \times				
Annotation properties		Datatypes	Individuals	📄 🗕 road — I	http://www.semanticv	veb.org
Classes	Object properties	Data	properties	Annotations	Usage	
Class hierarchy: roa	d			Annotations: roa	d	
Class hierarchy; roz Class hierarchy; roz	d ce g g of_worship of_interest mmodation ring th th ure rellaneous_point_of_ ey ic opping ism	interest	Asserted •	Annotations real Annotations and rdfs:label rdfs:comm A line place Description: read Equivalent To SubClass of General class SubClass of (d [language: en] e such as road, track, d a axioms () (Anonymous Ancestor)	path,
∽ ● high ∽ ● majo	way_link or_road			Target for Key	œ	
∽ ● minc ∽ ● path	or_road _unsuitable_for_cars	5		Disjoint With	Ð	

Part 4.5 - Phase 4 - Knowledge Definition

イロト 不得ト イヨト イヨト

Bottom-Up: Teleology Modelling

- A teleology is modelled, bottom up, starting with a tabulated list of Competency Questions (CQs) which encode the etypes and properties relevant to be modelled.
- Out of the CQs, the etypes and properties are modelled into an E(E)R diagram.
- Next, the E(E)R diagram is formalized as a formal schema (e.g., in OWL RDF/XML). This might have certain application-specific attributes.
- Finally, the **teleology** is produced (e.g., in OWL RDF/XML). It might be the same as the formal schema above, or without application-specific attributes, decided on a case-to-case basis.

Department of information engineering and computer science

Example: CQs

In the scenarios defined above, we represents a set of real users with specific features included in the project purpose, whhich are listed as follows:

- **Personas 1.** Lily, a 60-year-old woman living in Obergummer, Rovereto, is an outdoor enthusiast. She loves to explore the natural attractions of Trentino.
- **Personas 2.** Anna, a 28-year-old doctoral student, plays a key role in her research group. She is responsible for organizing various activities for the group.
- **Personas 3.** Luca, a 25-year-old master student lives around the Trento train station of the center of Trento, he has a passion for cooking and tasting food.

Taking into account the personas in the scenarios defined, we create Competency Questions (CQs):

- CQ 1. Please recommend Lily the nearest 3 peaks from her home.
- CQ 2. Can you provide the roads information that Lily can drive to the 3 peak destinations?
- CQ 3. On Monday, Anna wants to find an opening restaurant near DISI for the party of her research group. For the transportation convenience of students, this restaurant should near at least one bus stop.
- CQ 4. Luca is looking for a library near his home that is easily accessible by bus stops and surrounded by restaurants.
- CQ 5. Luca wants to shop in the supermarket that is nearest from his home.

Department of information engineering and computer science

Example: ER Model

Part 4 - The iTelos Methodology

Part 4.5 - Phase 4 - Knowledge Definition

Department of information engineering and computer science

Example: Teleology

Individuals	≡ 😑 bar_GID-14950 — http://www.semanticweb.org/l	Individuals	id_GID-10032 — http://www.sen
Annotation properties Datatypes	Annotations Usage	Annotation properties Datatypes	Annotations Usage
Data properties	Annotations: bar GID-14950	Data properties	Annotations: id CID-10032
Classes Object properties		Classes Object properties	Annotations. Id_GID=10052
Class hierarchy: bar_GI 🛛 🖛 📼	Annotations	Data property hierarchy 2008	Annotations 🔂
t t X Asserted C	rdfs:label [language: en]		rdfs:label [language: en]
	bar_GD-14950	Ti I Asserted O	id_GID-10032
withing	Description: bar_GID-14950	owl:topDataProperty	
bus station_GID-15745	Envirolment To O	category_GID-43482	Description: id_GID-10032
cafe_GID-15804	Equivalent To	city_GID-45969	C Equivalent To
library_GID-20054	Subclass of Ch	Id_GID=10032	
supermarket GID-22168	enear GID-84218 some bus station GID-15745'	latitude GID-46263	6.15 million (1)
train station_GID-22321	enear GID-84218 some 'train station GID-22321'	Iongitude_GID-46270	SubProperty Of
	e near GID-84218 some bar GID-14950	street_GID-24034	ownoppararroperty
	enear GID-84218 some cafe GID-15804	timetable_GID-34825	
	enear GID-84218 some library GID-20054	topics_GID-10034	Domains (intersection)
	near_GID=84218 some restaurant GID=22500		restaurant_GID-22500
	near_GID=84218 some restaurant_GID=22300		e bar_GID-14950
Data properties	Annotations: near CID-84218		bus station_GID-15745'
Classes Object propertie	Annotations. near_oiD=04210		cafe_GID-15804
endeede epicet properti	Annotations +		library_GID-20054
Object property hierarc 🛽			supermarket_GID-24168
	rdfs:label [language: en]		train station GID-22321'
Asse	near_GID-84218		
owl:topObjectProperty			
near GID-84218			Kanges W
			- xsuimt . C

Part 4 - The iTelos Methodology

イロト 不得ト イヨト イヨト

Knowledge Graph Engineering

Middle-Out: Teleontology Modelling

- In this step, the teleology is semantically aligned to the Lightweight Ontology to form a Teleontology.
- Semantic Alignment: each concept in the teleology (e.g., Professor) is added as a child (via IS-A) to their related general concept (e.g., Person) in the lightweight ontology.
- The above process is done, one at a time, for all the concepts in the teleology.
- Finally, the teleontology is produced, e.g., in OWL RDF/XML).

Department of information engineering and computer science

Example: Teleontology

Part 4 - The iTelos Methodology

Department of information engineering and computer science

Example: Teleontology in OWL RDF/XML

* • • • • Trentino_place_GID-10043 Asserted • Show: © this © disjoints © named sub/superclasses	
Trentino_place_GID-10043 Cafe_GID-15804 SubClassOf catering_GID-10046	
←● natural GID-10044	
c +● point of interest GID-10045	10045
←● transport GID-10053	
∽ ←● tree GID-69557 Description: catering GID-10046	
← ● peak GID-46388	
e ←● point of interest GID-10045	
← ←● catering GID-10046	
←● point of interest GID-10045	
• • public GID-10047	
← ← ← transport GID-10053	
• public GID-10047	
⊷ ←● shopping GID-387	
~ ←● spring GID-50318	
← ← transport GID-10053 ● on GID-10031 some road GID-22592	
← ← tree_GID-69557	

Part 4 - The iTelos Methodology

Part 4.5 - Phase 4 - Knowledge Definition

イロト 不得ト イヨト イヨト

Knowledge Annotation

- Finally, each teleontology concept: {entity type, object property and data property}, one at a time, is checked with the Language Annotation spreadsheet to identify its GID.
- Once the GID is identified, the concept in Protégé should be updated with the GID and re-written.
- There can be two syntactical cases of the re-writing:
 - if concept exists in Language Annotation spreadsheet, then the re-writing syntax would be, e.g., transport_GID-10053, OR,
 - 2 if you add a new concept in the teleontology from another reference standard/ontology (e.g., from FHIR), the syntax would be, e.g., fhir_hospital.

Department of information engineering and computer science

Knowledge Annotation Example

Class hierarchy: point_peak_GID-10005 2000	Annotations: point_peak_GID-10005	Object property hierarchy:	
🐮 😂 🐹 Asserted 0	Annotations 🔂		
 cwl:Thing Trentino_place_GID-10043 natural_GID-10044 Rest, CID-46288 	rdfs:label [language: en] point_peak_GID-10005	owl:topObjectProperty near_GID-84218 on_GID-10031	
<pre>point_peak_GID=10005 spring_GID=50318 point_spring_GID=10009</pre>	Description: point_peak_GID-10005 Equivalent To	Data properties Annotation properties Classes Object properties	Annotations: Usage Annotations: city_CID-45969
 eree_GID-69557 point_tree_GID-10011 point_of_interest_GID-10045 	SubClass of	Asserted C Asserted	Annotations () rdfs:label [language: en] city_GID-45969
<pre>catering_GID-10046</pre>	Ceneral class axioms 🕲	bridge_GID-15577 city_GID-45969 code_GID-35741	Description: city_GID-45969
 cale_GID-13004 point_cafe_GID-10003 restaurant_GID-22500 point_restaurant_GID-10008 	SubClass Of (Anonymous Ancestor)	fclass_GID=10027 gid_GID=10026 gid_GID=10024 layer_GID=33577	SubProperty Of
public_GID-10047 library_GID-20054 point_library_GID-10004 shopping_GID-387	 near_GID-84218 some natural_GID-10044 near_GID-84218 some transport_GID-10053 on_GID-10031 some railway_GID-10048 	name_GID-2 oneway_GID-10029 osm_id_GID-10025	Domains (intersection)
supermarket_GID-24168 point_supermarket_GID-10010 e railway_GID-10048	on_GID-10031 some road_GID-22592 Instances	stop code_GID-10028 stop code_GID-10037 stop description_GID-10039 street_GID-24034	point_of_interest_GID-10045 bus_station_GID-10054
 Initial_GID=13798 narrow_gauge_GID=10023 rail_GID=22309 road_GID=22592 	Target for Key 💿	timetable_GID=34825 topics_GID=10034 tunnel_GID=24989 zone_id_GID=10042	Ranges 😳 exsd:string
 major_road_GID-10049 primary_GID-10012 secondary_GID-10013 			
 tertiary_GID-10014 minor_road_GID-10050 living_street_GID-10020 minor_road_residential_GID-10021 			
 pedestrian_GID-10016 path_unsuitable_for_cars_GID-10051 bridleway_GID-10017 cycleway_GID-10018 footway_GID-10019 			
 path_GID = 10022 step_GID = 23917 very_small_road_GID = 10052 very_small_road_service_GID = 1001! 			
 transport_GID=10053 bus_station_GID=10054 point_bus_station_GID=10001 bus_stop_GID=10055 onint_bus_stop_GID=10002 			
 railway_halt_GID-10056 point_railway_halt_GID-10056 railway_station_GID-10057 			. @

point_railway_station_GID-10007

Department of information engineering and computer science

・ 何 ト ・ ヨ ト ・ ヨ ト

Phase 4 - Knowledge Definition

- 1 Preliminaries definitions
 - ER Models (recap)
 - EER Model
 - Ontologies
 - WC3 Technologies & Tools (recap)
- 2 iTelos Knowledge Modelling
 - EER Models Limitations
 - Teleologies & Teleontologies
 - KTelos process

3 Dataset Alignment

Э

Department of information engineering and computer science

イロト イ理ト イヨト イヨト

Datasets Alignment Activity

- (data layer) Dataset Alignment: On the data layer this activity aims at aligning the dataset previously collected, cleaned and formatted, with the modelling choices operated in the above parallel knowledge layer activity.
 - **Dataset updates** based on the ETypes modelled in KTelos.
 - The unique ontology produced for the final KG could represent the ETypes in a different way respect to their representation into each single datasets.
 - Data types alignment.

Department of information engineering and computer science

- Phase 4 Knowledge Definition Summary
 - What has been done in this phase.
 - The heterogeneity at knowledge level has been handled.
 - By modelling a unique representation of the information in the final KG(s), through a (a set of) Teleology(ies).
 - The output Teleology(ies) are interoperable and reusable for other purposes (uploaded in the knowledge catalog), thus actually reducing the effort in knowledge modelling for further projects.
 - The dataset, containing the Entities modelled in the Teleology(ies) through their ETypes, have been aligned with such ETypes, with the objective of facilitating the mapping between data and knowledge layer (iTelos Data Definition Phase).