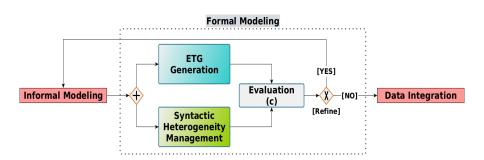




## **Ontology Selection**

iTelos Formal Modeling Phase

Fausto Giunchiglia, Mayukh Bagchi


1 Formal Modeling Phase

2 Ontology Selection

3 Ontology Selection - Example

4 Summary

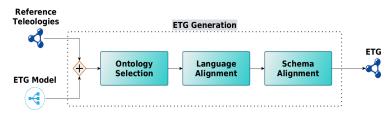
## **Formal Modeling phase**



## Formal Modeling objective

#### Formal Modeling is the third iTelos phase

Inputs: Outputs:


- ER model.
- Selected datasets.
- Reference ontologies.

- ETG.
- Dataset syntactically aligned.

### The Formal Modeling phase aims to:

- Knowledge layer: generate the ETG as shareable as possible reusing the reference ontologies, and as much as possible aligned with the ETG model.
- Data layer: handle the syntactic heterogeneity within the datasets.

## **ETG Generation Activity**



The ETG Generation activity is internally defined by three sub activities:

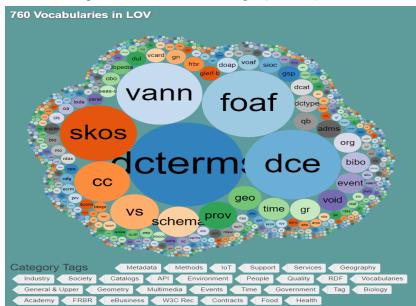
- Ontology Selection: selection of those ontologies which includes appropriate concepts which can be reused to model the ER.
- Language Alignment: identification, and import in Knowledge Base (see ETG generation in practice), of concepts and terms to be used to build the ETG.
- **Schema Building**: composition of the ER schema designed with the foundational teleology.

1 Formal Modeling Phase

2 Ontology Selection

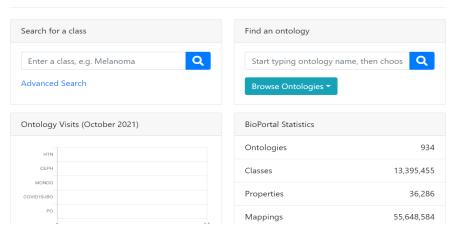
3 Ontology Selection - Example

4 Summary

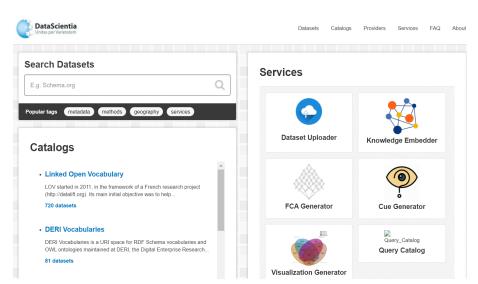

### **Motivation**

- In the informal modelling phase, we learnt about the methodology for developing the ER Model in accordance to the theory of teleology
- Ontology Selection, as the first step of ETG generation activity, is focused on reusing ontology elements (classes, object properties, data properties) from state-of-the-art ontologies which are semantically synonymous with concepts which model the ER model
- The key observation is the fact that the reused concepts are recast and aligned in terms of - objects, functions and actions explicit in the ER, something which is absent in the source ontology from where they are reused

## **Motivation (Contd.)**


- The recast and reuse can be from amongst any state-of-the-art general purpose ontology, domain-specific ontology or application-specific ontology found in ontology repositories such as LiveSchema, LOV etc.
- For example, for common concepts like space and time, schemas like GTFS (for space) and iCal, W3C Time (for time) can be reused
- Terms from *general purpose ontologies* such as *schema.org* and *DBpedia* can also be suitably reused as required
- Ontology Selection is key to the two unique feature of iTelos reuse and shareability (facilitated by metadata)

## **Linked Open Vocabulary (LOV)**




### **BioPortal**

# Welcome to BioPortal, the world's most comprehensive repository of biomedical ontologies



### LiveSchema



# **Approach**

We follow the  ${\it Common} 
ightarrow {\it Core} 
ightarrow {\it Contextual}$  ordered classification of concepts throughout the following ontology selection activity -

- Firstly, we consider the potential concepts (objects, functions, actions, data properties, object properties) in the common category from existing ontologies, which can be reused
- 2 Secondly, we consider the concepts from the core category which can be reused
- Finally, we consider the concepts from the contextual category which can be reused

The essence of the *iTelos methodology* is to (ideally) achieve maximum reuse of concepts for the core, common and contextual categories, roughly in a 20:60:20 proportion

1 Formal Modeling Phase

2 Ontology Selection

3 Ontology Selection - Example

4 Summary

## **Example**

The following concept hierarchy fragment is taken from schema.org -

- ▼ FoodEstablishment -
- Bakery
- BarOrPub
- Brewery
- CafeOrCoffeeShop
- Distillery
- FastFoodRestaurant
- IceCreamShop
- Restaurant
- Winery

## **Example (Contd.)**

- Reusing the above conceptual hierarchy (either fully or partially) depends upon the modelling requirements of the project.
- One approach can be to consider FoodEstablishment to be a Producer - Consumer of the object Establishment having several specialized functions such as Bakery, BarOrPub, Brewery etc ... in the context of the domain of food and accommodation as the reference context.
- Other (equally valid) approaches can be to utilize the hierarchy as it is (i.e. as an object hierarchy) if the modelling requirements (formalized in the ETG model) demands so.

1 Formal Modeling Phase

2 Ontology Selection

3 Ontology Selection - Example

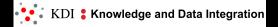
4 Summary

## **Summary**

- We learnt about the motivation behind the ontology selection activity and why it is key to iTelos methodology
- We understood the general approach to be followed for selecting and reusing concepts from ontologies to formally design the project teleology
- We illustrated via a small example of food establishment from schema.org, the possibilities which it offers for formal modelling
- THANK YOU !!!

1 Formal Modeling Phase

2 Ontology Selection


3 Ontology Selection - Example

4 Summary

- Ontology: An ontology is a formal, explicit specification of a shared conceptualization
- **Teleology**: Teleologies are ontologies with the proviso that teleologies focus on function and on how a chosen representation fits a certain purpose, this being the basis for a general model for the diversity of knowledge
- ER Model: An entity—relationship model describes interrelated things of interest in a specific domain of knowledge. It is composed of entity types and specifies relationships that can exist between entities

## Glossary (Contd.)

- ETG: An Entity Type Graph (ETG) is a fully formal, schema-level directed acyclic graph (DAG) which models concepts and interrelationships amongst such concepts for any domain of interest. Each concept in an ETG is *alinguistic* and is formally identified by a unique GID assigned in the UKC.
- EG: An Entity Graph (EG) is a data-level knowledge graph generated by populating an ETG with the entities extracted from the input datasets.





**Ontology Selection** iTelos Formal Modeling Phase