

Evaluation

iTelos Inception & Informal Modeling Phase

Fausto Giunchiglia

Contents

1 Evaluation on Inception phase

2 Evaluation on Informal Modeling phase

Contents

1 Evaluation on Inception phase

2 Evaluation on Informal Modeling phase

Evaluation purpose on Inception phase

In **schema level**, we have a set of Competency queries (CQs) and several collected ontologies.

We aim to measure:

■ If the collect ontologies cover CQs, using metric **coverage**.

If the collect ontologies bring additional information to CQs, using metric Extensiveness.

Examples: CQ vs Ont

Given a set of Competency Query (CQ), the coverage (Cov) of the aligned ontology (Ont) is:

Examples: CQ vs Ont

Given a set of Competency Query (CQ), the Extensiveness (Ext) of the aligned ontology (Ont) is:

Etype
Extensiveness
$$Ext(CQ_c) = \frac{|Ont_c - CQ_c|}{|CQ_c \cup Ont_c|}$$

 $Ext = 1$ Full Extensiveness
 $Ext \simeq 0.5$ Ideal
 $Ext = 0$ No Extensiveness
Property
Extensiveness $Ext(CQ_p) = \frac{|Ont_p - CQ_p|}{|CQ_p \cup Ont_p|}$
 $Ext = 1$ Full Extensiveness
 $Ext \simeq 0.5$ Ideal
 $Ext \simeq 0.5$ Ideal
 $Ext = 0$ No Extensiveness
 $Ext \simeq 0.5$ Ideal
 $Ext = 1$ Full Extensiveness
 $Ext \simeq 0.5$ Ideal

Examples: CQs

- List all the **places** where one can eat which have all rating higher than 4 stars.
- List all the eating establishments which are suitable for groups and also provide children menu.
- Give me facilities with vegetarians menu and price range medium-low.
- Give me the contacts of all the eating establishments that accept reservations and have a parking lot.
- Where to eat **pizza** for lunch?

Classes in CQs: $C_c = \{ place, eatingEstablishment, facilities, pizza \}$ (Num class = 4)

Properties in CQs: C_p ={reservation, lunch, rating, suitableForGroup, childrenMenu, Vegetarians, contact, address, parkingLot } (Num property = 8)

*Notice, words in purple means that class/property is aligned.

Fausto Giunchiglia

Evaluation

Examples: Reference Ontologies

Evaluation

Examples: Reference Ontologies

Classes/Etypes in ontology:

C_c={AdministrativeDivision, Country, City, Suburb, Building, CommercialBuilding, place, eatingEstablishment} (Num class = 8)

Properties in ontology:

 C_p = {rating, suitableForGroup, childrenMenu, Vegetarians, contact, address, parkingLot,.... OpenForlunch} (Num property = 38)

*Notice, words in purple means that class/property is aligned.

Examples: CQ vs Ont

Given the example CQ, and the example reference ontology Ont, we have:

Etype
Coverage
$$Cov(CQ_c) = \frac{|CQ_c \cap Ont_c|(2)|}{|CQ_c|(4)} = 0.5$$
 Etype
Extensiveness $Ext(CQ_c) = \frac{|Ont_c - CQ_c|(6)|}{|CQ_c \cup Ont_c|(12)|} = 0.6$
Property
Coverage $Cov(CQ_p) = \frac{|CQ_p \cap Ont_p|(6)|}{|CQ_p|(8)|} = 0.75$ Property
Extensiveness $Ext(CQ_p) = \frac{|Ont_p - CQ_p|(32)|}{|CQ_p|(40)|} = 0.8$

Notice that:

- Intersection information (coverage) should more likely belongs to common or core category.
- Additional information (extensiveness) should be core and contextual information.

Evaluation purpose on Inception phase

In **data level**, we have a set of CQs and several collected datasets/schema.

We aim to measure:

■ If the collect datasets cover CQs, using metric **coverage**.

If the collect datasets are much different from CQs, using metric Sparsity.

Examples: CQ vs Dataset

Given a set of Competency Query (CQ), the coverage (Cov) of the aligned dataset (D) is:

Etype
Coverage
$$Cov(CQ_c) = \frac{|CQ_c \cap D_c|}{|CQ_c|}$$

$$Cov = 1 \quad Full coverage$$

$$0.6 < Cov < 0.8 \quad Ideal \\ Cov = 0 \quad No \ coverage$$
Property
$$Cov(CQ_p) = \frac{|CQ_p \cap D_p|}{|CQ_p|}$$

$$Cov = 1 \quad Full \ coverage$$

$$0.6 < Cov < 0.8 \quad Ideal \\ Cov = 0 \quad No \ coverage$$

Examples: CQ vs Dataset

Given a set of Competency Query (CQ), the sparsity (Spr) of the aligned dataset (D) is:

Expe
sparsity
$$Spr(CQ_c) = \frac{|CQ_c - D_c| + |D_c - CQ_c|}{|CQ_c \cup D_c|} = 1 - \frac{|CQ_c \cap D_c|}{|CQ_c \cup D_c|}$$

$$Spr = 1 \quad Full Sparsity$$

$$Spr \approx 0.5 \quad Ideal$$

$$Spr = 0 \quad No \ Sparsity$$

$$Spr(CQ_p) = \frac{|CQ_p - D_p| + |D_p - CQ_p|}{|CQ_p \cup D_p|} = 1 - \frac{|CQ_p \cap D_p|}{|CQ_p \cup D_p|}$$

$$CQ - D \quad CQ \quad D$$

$$CQ \quad D$$

Examples Dataset

Classes in dataset: (Num = 11, 2 of them aligned with CQ.) Properties in dataset: (Num = 40, 6 of them aligned with CQ.)

Establishment Type

Restaurants Dessert Coffee & Tea More •

Reservations

Online Reservations Restaurant Deals Available Tonight

Cuisines & Dishes

□ Italian Pizza Mediterranean More 🕶

Dietary Restrictions

Vegetarian Friendly Vegan Options Gluten Free Options

Meals

Breakfast

- Brunch Lunch
- Dinner

Price Cheap Eats

Oro Stube Povo 404 reviews

#2 of 101 Results SS - SSS. Italian, Pizza, Mediterranean, Veoetarian Friendly, Vegan Options, Glu. "Avant-garde Italian food" 10/01/2018

Pizzeria da Albert

0000 1,666 reviews #3 of 101 Results \$\$ - \$\$\$. Italian. Pizza. Vegetarian Friendly. Vegan Options

"Sensational pizzal" 08/16/2017 ... euros for margherita and the most e ... 07/10/2017

Ristorante Pizzeria Al Duomo

230 reviews #4 of 101 Results \$\$ - \$\$\$. Italian, Pizza, Mediterranean, European, Vegetarian Friendly, Vegan O ...

"Great pizza in the heart of Trento" 06/03/2018 "Could Not Ask For More" 07/17/2018

Uva e Menta

0000 1.091 reviews #5 of 101 Results \$\$ - \$\$\$. Italian, Brew Pub, Pizza, Mediterranean, Vegetarian Friendly, Vegan O.

"Amazing pizzas, friendly staff, service a" 07/31/2018 "Good Brew, Tasty Pizza, Nice People!" 07/17/2018

Olympic restaurant 425 reviews

Fausto Giunchiolia

Evaluation

Examples: CQ vs Dataset

Given the example *CQ*, and the example collected Dataset *D*, we have:

Etype
Coverage
$$Cov(CQ_c) = \frac{|CQ_c \cap D_c|(2)|}{|CQ_c|(4)|} = 0.5$$
 Etype
Sparsity $Spr(CQ_c) = 1 - \frac{|CQ_c \cap D_c|(2)|}{|CQ_c \cup D_c|(13)|} = 0.84$
Property
Coverage $Cov(CQ_p) = \frac{|CQ_p \cap D_p|(6)|}{|CQ_p|(8)|} = 0.75$ Property $Spr(CQ_p) = 1 - \frac{|CQ_p \cap D_p|(6)|}{|CQ_p \cup D_p|(42)|} = 0.86$

Notice that:

- Intersection information (coverage) should more likely belongs to common or core category.
- Different information (sparsity) should be core or contextual information.

1 Evaluation on Inception phase

2 Evaluation on Informal Modeling phase

Evaluation purpose on Informal modelling phase

In **schema level**, we have the proposed informal ER model and a set of CQs. We aim to measure:

If the proposed informal ER model cover CQs, using metric coverage.

If the proposed informal ER model properly extend CQs, using metric extensiveness.

Examples: ER model vs CQs

Given a set of Competency Query (CQ), the coverage (Cov) of the ER model (ER) is:

Examples: ER model vs CQs

Given a set of Competency Query (CQ), the Extensiveness (Ext) of the ER model (ER) is:

Etype
Extpress
$$Ext(CQ_c) = \frac{|ER_c - CQ_c|}{|CQ_c \cup ER_c|}$$

 $Ext = 1$ Full Extensiveness
 $Ext \simeq 0.5$ Ideal
 $Ext = 0$ No Extensiveness
Property
Extensiveness $Ext(CQ_p) = \frac{|ER_p - CQ_p|}{|CQ_p \cup ER_p|}$
 $Ext = 1$ Full Extensiveness
 $Ext \simeq 0.5$ Ideal
 $Ext \simeq 0.5$ Ideal
 $Ext = 1$ Full Extensiveness
 $Ext \simeq 0.5$ Ideal
 $Ext = 1$ ON Pose Extensiveness

Examples: ER model

Classes/Etypes in ontology:

C_c ={AdministrativeDivision, City, Suburb, Building, EatingEstablishment, ..., Event} (Num class = 18, 3 of them aligned with CQ.)

Properties in ontology:

 C_p = {rating, Vegetarians, contact, reservation, parkingLot,.... OpenForlunch} (Num property = 36, 5 of them aligned with CQ.)

Examples: CQs

- List all the **places** where one can eat which have all rating higher than 4 stars.
- List all the eating establishments which are suitable for groups and also provide children menu.
- Give me facilities with vegetarians menu and price range medium-low.
- Give me the contacts of all the eating establishments that accept reservations and have a parking lot.
- Where to eat **pizza** for lunch?

Classes in CQs: C_c ={place, eatingEstablishment, facilities, pizza} (Num class = 4)

Properties in CQs: C_p ={rating, suitableForGroup, childrenMenu, Vegetarians, contact, reservation, parkingLot, lunch} (Num property = 8)

Examples: ER model vs CQs

Given the example CQ, and the example ER model ER, we have:

 $\begin{array}{ll} \mbox{Etype}\\ \mbox{Coverage} & Cov(CQ_c) = \frac{\mid CQ_c \cap ER_c \mid (3)}{\mid CQ_c \mid (4)} = 0.75 \\ \mbox{Property}\\ \mbox{Coverage} & Cov(CQ_p) = \frac{\mid CQ_p \cap ER_p \mid (5)}{\mid CQ_p \mid (8)} = 0.625 \\ \mbox{Property}\\ \mbox{Extensiveness} \\ \mbox{Ext}(CQ_p) = \frac{\mid ER_c - CQ_c \mid (15)}{\mid CQ_p \cup ER_c \mid (19)} = 0.79 \\ \mbox{Property}\\ \mbox{Extensiveness} \\ \mbox{Ext}(CQ_p) = \frac{\mid ER_c - CQ_p \mid (31)}{\mid CQ_p \cup ER_p \mid (39)} = 0.79 \end{array}$

Notice that:

- Intersection information (coverage) should more likely belongs to common or core category.
- Additional information (extensiveness) should be core and contextual information. We should find the balance on extensiveness, since too much hard to maintain, too less not properly extend

Evaluation purpose on Informal modelling phase

In **data level**, we have the proposed informal ER model and several collected datasets.

We aim to measure:

- If the informal ER model align with collect datasets, using metric coverage.
- If the informal ER model is much different from collect datasets, using metric Sparsity.

Examples: ER model vs Dataset

Given the dataset (D), the coverage (Cov) of the ER model (ER) is:

Examples: ER model vs Dataset

Given the dataset (D), the sparsity (Spr) of the ER model (ER) is:

Etype
Sparsity
$$Spr(D_c) = \frac{|ER_c - D_c| + |D_c - ER_c|}{|ER_c \cup D_c|} = 1 - \frac{|ER_c \cap D_c|}{|ER_c \cup D_c|}$$

 $Spr = 1$ Full Sparsity
 $Spr \simeq 0.5$ Ideal
 $Spr = 0$ No Sparsity
Property
Sparsity $Spr(D_p) = \frac{|ER_p - D_p| + |D_p - ER_p|}{|ER_p \cup D_p|} = 1 - \frac{|ER_p \cap D_p|}{|ER_p \cup D_p|}$
 $Spr = 1$ Full Sparsity
 $Spr = 0$ No Sparsity
 $Spr = 0$ No Sparsity
 $Spr = 0$ No Sparsity

Examples: ER model

Classes/Etypes in ontology:

C_c ={AdministrativeDivision, City, Suburb, Building, EatingEstablishment, ..., Event}

(Num class = 18, 8 of them aligned with Dataset.)

Properties in ontology:

 C_p = {rating, Vegetarians, contact, reservation, parkingLot,.... OpenForlunch} (Num property = 36, 16 of them aligned with Dataset.)

Examples Dataset

Classes in dataset: (Num = 11, 8 of them aligned with ER model.) **Properties in dataset**: (Num = 40, 16 of them aligned with ER model.)

Establishment Type

Restaurants
 Dessert
 Coffee & Tea
More

Reservations

Online Reservations
Restaurant Deals
Available Tonicht

Cuisines & Dishes

Italian
 ✓ Pizza
 Mediterranean
 More ▼

Dietary Restrictions

Vegetarian Friendly
Vegan Options
Gluten Free Options

Meals

Breakfast

Lunch

Dinner

Price Cheap Eats

 OOOOO 404 reviews #2 of 101 Results \$\$ -\$\$\$; Jalain, Pizza, Mediterranean, Vegetarian Friendly, Vegan Options, Glu... "Avant-gande Italian food": 1001/2018 Jalain 1000": 1001/2018

Pizzeria da Albert

I,666 reviews
 #3 of 101 Results
 \$\$\$. \$\$\$. Italian. Pizza. Vegetarian Friendly, Vegan Options

"Sensational pizzal" 08/16/2017 "... euros for margherita and the most e..." 07/10/2017

Ristorante Pizzeria Al Duomo

200 roviews
 40 of 101 Results
 \$\$ - \$\$\$, Italian. Pizza. Mediterranean. European. Vegetarian Friendly. Vegan O...

"Great pizza in the heart of Trento" 08/03/2018 "Could Not Ask For More" 07/17/2018

Uva e Menta

OOOO 1,091 reviews
#5 of 101 Results
\$\$ - \$\$\$. Italian. Brew Pub. Pizza. Mediterranean. Vegetarian Friendly, Vegan O.

"Amazing pizzas, friendly staff, service a..." 07/31/2018 "Good Brew, Tasty Pizza, Nice People!" 07/17/2018

Olympic restaurant

Fausto Giunchiglia

Evaluation

Examples: ER model vs Dataset

Given the dataset (*D*), and the example ER model (*ER*), we have:

 $\begin{array}{l} \mbox{Etype}\\ \mbox{Coverage} \quad Cov(D_c) = \frac{\mid ER_c \cap D_c \mid (8)}{\mid D_c \mid (11)} = 0.73 \quad \mbox{Etype}\\ \mbox{Sparsity} \quad Spr(D_c) = 1 - \frac{\mid ER_c \cap D_c \mid (8)}{\mid ER_c \cup D_c \mid (19)} = 0.58 \end{array}$ $\begin{array}{l} \mbox{Property}\\ \mbox{Coverage} \quad Cov(D_p) = \frac{\mid ER_p \cap D_p \mid (16)}{\mid D_p \mid (40)} = 0.4 \quad \mbox{Property}\\ \mbox{Sparsity} \quad Spr(D_p) = 1 - \frac{\mid ER_p \cap D_p \mid (16)}{\mid ER_p \cup D_p \mid (60)} = 0.73 \end{array}$

Notice that:

- Intersection information (coverage) should more likely belongs to common or core category.
- Different information (sparsity) should be core or contextual information. The sparsity should also keep a balance because if ETG model and dataset are very different, they will be hard to align.

Fausto Giunchiglia

Evaluation

iTelos Inception & Informal Modeling Phase